1.1 DPCI-PLC 制御関数 ライブラリ

WDPLCPCI . DLL (Windows95 /98 用)

NTDPLC . DLL (Windows N T 4.0 が提供しているコマンド制御関数 は次の通)です。 用)

(以下の 説明では WDPLCPCI.DLL と記述しています。 NT をご使用の方は 適宜読み替えてくださ (1,)

例題は Visual Basic 5.0 の 書式で記述しています。

関数名	機能
StartDplcDevice()	デバイスの 開始
EndDplcDevice()	デバイスの終了
bordinit()	インタフェース ボー HD 初期化
unitrst()	各ユニット 初期化
Xin_byt()	Xデバイスの 読み出し (1バイ F単位)
Xin_bit()	Xデバイスの 読み出し (1ビッド単位)
You <u>t</u> byt()	Yデバイスの 書き込み (1バイ 単 位)
You <u>t</u> bitrst()	Yデバイスの Uz ット
You <u>t</u> bitset()	Yデバイスのセット
From ()	バッファメモUD 読み出し
To_ am d()	バッファメモリの 書き込み

1.1.1デバイスの 開始

S tartDplcDevice

デバイスの 開始 機能

形式 StartDplcDevice Lib "WDPLCPCI.DLL" () As Long

> 0:異常 0以外:デバイス ハンドル 戻り値

解説 デバイスハンドルを取得します。

例 hDevice = StartDplcDevice()

If hDevice = 0 Then

MsgBox "NG"

Else

MsgBox "OK"

1.1.2デバイスの終了

EndDplcDevice

機能 デバイスの終了

形式 EndDplcDevice Lib "WDPLCPCI.DLL" () As Long

戻り値: 0:異常 0以外:正常

解説 デバイス ハンドルを解放します。

例 ret = EndDplcDevice(hDevice)

If ret = 0 Then

MsgBox "NG"

Else

MsgBox "OK"

1.1.3インタフェースボードの初期化

bord_init

機能 インタフェースボートの初期化

形式 bord_init Lib "WDPLCPCI.DLL" (ByVal hDevice As Long) As Long

hDevice : デバイス ハンドル

戻り値: 0:正常 0以外:異常

解説 インタフェースボードの初期化をします。この関数を実行することでインタフェースボ

一ドのアクセスが可能となります。

例 ret = bord_init(hDevice)

If ret = 0 Then

MsqBox "OK"

Else

MsgBox "NG"

1.1.4各ユニットの 初期化

unitrst

機能 各ユニットの 初期化

形式 unitrst Lib "WDPLCPCI.DLL" (ByVal hDevice As Long) As Long

hDevice : デバイス ハンドル

戻り値: 0:正常 0以外選常

解説 Ann, AnSなどの各ユニットの初期化をします。電源投入時と同等になります。

例 ret = unitrst(hDevice)

If ret = 0 Then

MsgBox "OK"

Else

MsgBox "NG"

1.1.5 Xデバイスの 読み出し (1バイト単位)

Xin byt

機能 Xデバイスの 読み出し (1バイ F単位)

形式 Xin bit Lib "WDPLCPCI.DLL" (ByVal hDevice As Long,

> ByVal base As Byte, _ ByVal port As Byte, _ ByVal xdno As Byte) As Byte

hDevice デバイスハンドル base ベース番号 0~7

port I/ Oポー |番号 0~ 7 xdno Xデバイスの No. 0~63

Xデバイスの 読み出した データ 戻り値

base,port,xdnoで指定する値の範囲は使用するベース、ユニッドは別異なります。

解説 base,port,xdnoで指定された Xデバイスの 入力書を含む 1バイト(8点 分の データを

読み出します。

例

システム構成

ユニット名= A1SX41

ベース 番号 = 0

I/ Oポート番号 = 2

入力データ (X)= 1FH 18H 17H 10H 0FH H80 07H 00H 0000000 00001000 0000 0000 00001001 00H 08H 00H

09H

data = Xin_byt(hDevice, 0, 2, 3)

(data = 9)X00~ X070 1パイ 1分の データ)

data = Xin bvt(hDevice, 0, 2, 0)

X00~ X070 1パイ H分の データ (data = 9

xdno に Oまたは 3を指定しても、同じ内容が 得られる。

)

1.1.6 Xデバイスの 読み出し (1ビット単位)

Xin bit

機能 Xデバイスの 読み出し (1ビット単位)

形式 Xin bit Lib "WDPLCPCI.DLL" (ByVal hDevice As Long,

> ByVal base As Byte, _ ByVal port As Byte, _ ByVal xdno As Byte) As Byte

デバイス ハンドル hDevice

base ベース番号 0~7

port I/ Oポー |番号 0~ 7 xdno Xデバイスの No. 0~63 Xデバイスの 読み出した データ 戻り値

base,port, xdnoで指定する値の範囲 使用するベース ,ユニッド より異います

解説 base,port,xdno で指定された Xデバイスの 入力信号の データを1ビット(1点)分読み出 します。

例 ユニット名= A1SX41

ベース 番号 = 0

I/ Oポート番号 = 1

入力データ (X)= 1FH 07H 18H 17H 10H 0FH 08H 00H 0000000 00001000 0000 0000 00001001

00H 08H 00H

09H

data = Xin_bit(hDevice, 0, 1, 3)

(data = 1)

data = Xin bit(hDevice, 0, 1, 1)

(data = 0)

data = Xin_bit(hDevice, 0, 1, 19)

(data = 1)

1.1.7 Yデバイスの 書き込み (1バイ **)**単位)

Yout byt

機能 Yデバイスの書き込み(1バイト単位)

形式 Yout byt Lib "WDPLCPCI.DLL" (ByVal hDevice As Long,

ByVal base As Byte, _ ByVal port As Byte, _ ByVal ydno As Byte, _ ByVal data As Byte) As Long

hDevice : デバイス ハンドル

base : ベース 番号 0~ 7

port : I/ Oポート番号 0~ 7 ydno : Yデバイスの No. 0~ 63

data : 書き込みデータ

base,port , ydnoで指定する値の範囲 使用するベース ,ユニッド より異います

解説 base,port,ydnoで指定された Yデバイスを含む 1バイト分の 出力データを書き込みます。 (data には 常に現在の Yデバイスの 状態が 記憶されていなければ なりません。初期化

[unitrst]を行うと同時に data をク リアしてください。)

例 ユニット名= A1SY41

ベース 番号 = 0

I/ Oポート番号 = 2

 $ydev(0, 2, 0 \pm 8) = 10$

ret = Yout_byt(hDevice, 0, 2, 0, 10)

00 00001010

00H 00H 00H

0AH

 $ydev(0, 2, 0 \pm 8) = 11$

ret = Yout_byt(hDevice, 0, 2, 0, 11)

0 O H

0 0 H

0ВН

ydev(0, 2, 19 + 8) = 5

0 0 H

1.1.8 Yデバイスの リセット

Yout_bitrst

機能 Yデバイスの リセット

形式 Yout_bitrst Lib "WDPLCPCI.DLL" (ByVal hDevice As Long, _

ByVal base As Byte, _ ByVal port As Byte, _ ByVal ydno As Byte, _ ByRef data As Byte) As Long

hDevice : デバイス ハンドル base : ベース 番号 0~7

port : I/ Oポー 播号 0~ 7
ydno : Yデバイスの No. 0~ 63
data : ydno を含い Yデバイス 1パイ 分の データ

base,port , ydnoで指定する値の範囲使用するベース ,ユニッド より異います

解説 base,port,ydnoで指定された Yデバイス を 少 ッ やし、その 内容を dataに 格 納します。 (dataに は 常に 現宝の Yデバイスの 状態が、記憶されて いなければ なりません。初期化 [unitrst]を行うと同時に data をク リアしてください。)

例 ユニット名 = A1SY41 ベース 番号 = 0 IV Oポート番号 = 2

ret = Yout bitrst(hDevice, 0, 2, 0, ydev(0, 2, $0 \neq 8$))

ret = Yout_bitrst(hDevice, 0, 2, 1, ydev(0, 2, 1 \pm 8))

30H

1.1.9 Yデバイスのセット

Yout_bitset

機能 Yデバイスのセット

形式 Yout_bitset Lib "WDPLCPCI.DLL" (ByVal hDevice As Long, _

ByVal Board As Byte, _ ByVal port As Byte, _ ByVal ydno As Byte, _ ByRef data As Byte) As Long

hDevice : デバイス ハンドル base : ベース 番号 0~7

port : I/ Oポー 暦号 0~ 7 ydno : Yデバイスの No. 0~ 63

data : ydnoを含む Yデバイス 1バイ H分の データ

base,port , ydnoで指定する値の範囲 使用するベース ,ユニッド より異います

解説 base,port,ydnoで指定された Yデバイス をセットし、その 内容を dataに格納します。 (data には 常に 現在の Yデバイスの 状態が 記憶されていなければ なりません。初期化

[unitrst]を行うと同時に data をケリアしてください。)

例 ユニット名= A1SY41

ベース 番号 = 0

I/ Oポート番号 = 2

ret = Yout_bitset(hDevice, 0, 2, 1, $ydev(0, 2, 1 \pm 8)$)

00 10111010

00H 00H 00H

BAH

ret = Yout_bitset(hDevice, 0, 2, 17, ydev(0, 2, 17 \pm 8))

出力データ = 1FH 18H 17H 10H 0FH 08H 07H 00H 00000000 00000010 0000000

00 10111010

00H 02H 00H

BAH

1.1.10バッファメモリの 読み出し

From

機能 バッファメモリの 読み出し

形式 From Lib "WDPLCPCI.DLL" (ByVal hDevice As Long, _

ByVal base As Byte, _ ByVal port As Byte, _ ByVal add As Integer, _ ByRef data As Integer, _ ByVal word As Integer, _ ByRef ddata As Byte) As Long

hDevice : デバイス ハンドル

base : ベース 番号 0~7

port : I/ Oポー I番号 0~ 7

add : バッファメモリアドレス

 data
 :
 読み出しデータ格納バッファ

 word
 :
 読み出しワード(16ビット数

ddata : Y18 ~ Y1F0 1バイ H分の格納バッファ

戻り値: 1 正常 0 異常

base,portで指定する値の範囲は使用するベースにより異なります。

解説 base,portで指定されたユニットから addで示されるバッファメモリの内容を word分だけ読み出し data に格納します。読み出しワート数のMax値は 32767ワードで

す。ただし読み出しデータ格納バッファサイズ以上を設定しないでください。

例 ユニット名= A1S64AD

ベース 番号 = 0

I/ Oポート番号 = 2

ret = From(hDevice, 0, 2, 10, rdbuf(0), 4, ydev(0, 2, &H1F \(\) 8))

rdbuf(0)~rdbuf(3)に、ch1~ ch40 A/ D変換れた値が読み出されます。

1.1.11バッファ メモリか 書き込み

To__am d

機能 バッファメモリの書き込み

形式 To cmd Lib "WDPLCPCI.DLL" (ByVal hDevice As Long,

ByVal base As Byte, _ ByVal port As Byte, _ ByVal add As Integer, _ ByRef data As Integer, _ ByVal word As Integer, _ ByRef ddata As Byte) As Long

hDevice : デバイス ハンドル base : ベース 番号 0~7

port : I/ Oポー M番号 0~ 7

add : バッファメモリアドレス

 data
 :
 書き込みデータ格納バッファ

 word
 :
 書き込みワード(16ビット)数

dd ata : Y18 ~ Y1F0 1バイ H分の格納バッファ

戻り値: 1 正常 0 異常

base, port で 指定する 値の 範囲は 使用する ベースに より異なります。

解説 base,portで指定されたユニットの addで示されたアドレスに dataの内容を書き込みます。

書き込みワート数0 M ax値は 32767ワートです。

例 ユニット= A1S62DA

ベース 番号 = 0 IV Oポート番号 = 2

wrbuf(0) =128;

wrbuf(0) = 120; wrbuf(1)=9029;

A1S62DA0 パッファメモリの"1"と"2"にデジタル値 128,9029 を書き込みます。